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An experimental examination of the large-eddy 
equilibrium hypothesis 
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The large-eddy energy equilibrium hypothesis states that the largest eddies of a 
turbulent shear flow are in approximate energy equilibrium throughout a signifi- 
cant part of their lives. This hypothesis leads to a relationship between the mean 
rate of shear strain and the Reynolds shear stress which involves the scale of the 
large eddies. By assuming that the large-eddy scale is proportional to the standard 
deviation of the free turbulent boundary, or laminar superlayer, the validity of 
this hypothesis may be checked experimentally. Intermittency and mean velo- 
city measurements made in five different two-dimensional shear flows are pre- 
sented and these results, together with values calculated from Townsend's 
measurements in a two-dimensional wake, support the form of relationship 
suggested by the energy equilibrium hypothesis. 

1. The energy equilibrium hypothesis 
In his monograph, Townsend (1956) proposed at model for the structure of 

turbulent shear flow which is based upon the division of the turbulent scales into 
'large eddies' comparable in size to the scale of the mean motion, and the 're- 
maining eddies ' which contain most of the turbulent energy. The stretching of 
the large eddies by the mean flow is postulated as the chief mechanism whereby 
energy is transferred from the mean to the turbulent motion and the transfer of 
energy to the smaller eddies may be pictured as a repetition of the initial process 
but with increasingly random orientation and smaller scale. 

The large-eddy equilibrium hypothesis, as its name implies, suggests that the 
large eddies are in approximate energy equilibrium throughout a significant 
part of their existence, gaining energy from the mean motion and losing energy at 
an equal rate to the remaining turbulent motion. An expression stating the 
hypothesis may be derived quite simply by equating the energy loss to the energy 
gain of a time-averaged turbulent motion having its own length and velocity 
scales (say I' and a', respectively). The assumption of these unique scales is 
equivalent to the assumption that the large eddy is a self-similar motion but 
the assumed scales need not be the same as those of the mean flow. 

By assuming a particular form for the large eddies of a turbulent shear flow, 
Townsend (1956) was able to demonstrate the conformity of wake development, 
and more approximately of free-jet and boundary-layer development, to the 
principle of large-eddy equilibrium. Measurements by Grant (1 958) have since 
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shown, however, that the form of large eddy chosen by Townsend is not com- 
patible with some velocity correlations in wakes or boundary layers, so that 
Townsend’s conclusions regarding the hypothesis are somewhat doubtful. 

The present experimental verification does not depend on a particular form for 
the large eddies, but uses values of the shear stress and large-eddy scale measured 
in various two-dimensional shear flows to examine the proportionality predicted 
by the large-eddy equilibrium hypothesis. Interest in this hypothesis has arisen 
because of its use, together with other assumptions, as a basis for predicting the 
streamwise development of certain types of turbulent shear flows (Gartshore 
1965). 

The energy equation for the turbulent motion may be written (in the notation 
used by Townsend 1956) a,s 

(4 (W 
To apply this equation to the large-eddy motion alone, only the major pro- 

duction and dissipation terms are considered (terms (A) and (B) respectively) 
and the kinematic viscosity v is replaced by a scalar ‘effective viscosity’ el 
which represents the action of the smaller turbulent scales on the large eddy itself. 
Because the large eddy contains a relatively small fraction of the total turbulent 
energy, it is tempting to assume that this scalar el is equivalent to the usual 
turbulent kinematic viscosity, defined in a two-dimensional shear flow as 

-uV = E(au/aY) .  (2) 

In  any case, it  will be assumed that the ratio of E to el has a unique value. (This 
statement suggests a means of defining the spectral extent of the large eddies.) 

Equating terms (A) and (B) of equation (1) for the large eddy in a two-dimen- 
sional shear flow, we have 

In terms of the shear stress - u;, equation (3) becomes 

(uy aupy K E ( U y / ( z ’ p .  (3) 

- w v a  (Z’p (aU/ay)2.  (4) 
- 

Equation (4) is equivalent to Prandtl’s mixing length hypothesis except that E‘ 
is now identified as the scaIe of the large eddies in the flow. 

For flows in which the mean velocity profile may be represented by a single 
velocity and length scale (U, and Lo respectively), equation (3) becomes 

u, Lo/€ cc (LO/Z‘)2. (5) 

Equation (5) has the same form as that of an expression derived by Townsend 
( 5  6.7 of his monograph) for the equilibrium condition for large eddies. 
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2. The basis for experimental examinations 
The relatively sharp boundary to the region of turbulent flow in free turbu- 

lence is continuously wrinkled and contorted by the neighbouring turbulent 
motion. The amplitudes of displacement which occur in this free boundary, or 
viscous superlayer as it is sometimes called, are related to the scales of the eddies 
in the turbulent motion, and it is plausible to assume that a direct proportionality 
exists between the larger wrinkle amplitudes and the larger eddy scales. This 
proportionality need not, and probably does not extend to small eddy scales and 
small boundary displacements, for the lateral position of a small eddy in the flow 
will vary considerably from one eddy to another with varying effect on the related 
super-layer distortion, whereas a large eddy will have a more restricted location 
in the flow. The standard deviation of the viscous super-layer position is most 
strongly influenced by the larger displacement amplitudes and is therefore a 
convenient measure of the large eddy length scale. 

In  summary, the experimental valuation of equation (5) with which the follow- 
ing sections are concerned is based on the assumption that the standard devia- 
tion of the free-boundary position is directly proportional to the scale of the large 
eddies present in the turbulence. The standard deviation, hereafter designated 
by (T, has been obtained from measured distributions of the intermittency 
factor, as described in the next section. 

All of the quantities in equation ( 5 )  have been evaluated in five different 
two-dimensional shear flows of which four are approximately self-preserving wall 
jets and one is the free jet in still air. To these results have been added values 
calculated from the small deficit wake, measured by Townsend (1949). In all 
these cases, the mean velocity profile over a major part of the flow may be pre- 
sented by an expression of the form 

- u, = uo exp { - k(Y/Lo)2>, 

u = u,+gu, 
where U, is the free-stream velocity, Lo is the width to the point where 

and k, in consequence of these definitions, is log, 2. (See also figure 1 for identi- 
fication of symbols.) 

FIGURE 1. The wall jet in streaming flow; definition of symbols. 
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The restriction of this examination to approximately self-preserving jets and 
wall jets was necessitated by the requirement that the turbulence a t  the point 
of measurement should have a sufficiently long and uniform history to ensure that 
the large eddies of the flow were a product of equilibrium types and orientations 
of the mean-flow rate-of-strain tensors. It appears from Townsend’s measure- 
ments of intermittency in a small deficit wake (Townsend 1949, 1956) that the 
intermittency a t  xld = 160 is distinctly different from that a t  x/d = 1000, the 
difference being due presumably to the persistence of large eddies formed near 
the wake-producing body. Since no such large eddies are formed in the initial 
stages of a jet or wall jet, these flows approach complete similarity much more 
quickly than the wake, and their investigation therefore requires shorter stream- 
wise lengths to ensure definitive results. 

3. Experimental arrangements 
The wall- jet measurements reported here were made in the McGill University 

open-circuit, blower wind tunnel which has a rectangular working section of 
dimensions 17 in. x 30 in. One of the 30 in. sides of this working section consists 
of slats which can be adjusted to bleed air from the tunnel to create an adverse 
pressure gradient when a screen or perforated plate is fastened over the down- 
stream end of the section. To provide the wall jet, air is blown parallel to the free- 
stream direction from a slot in the other 30 in. side of the tunnel. The slot size b 
was varied from 0.20 to 0.30in. and the slot Reynolds number based on the jet 
velocity at the slot and the slot width varied from 10,200 to 23,100 (see table 1). 
The tunnel settling section contains three screens with open area ratios of 0.4824, 
0.4824 and 0-3855 in that streamwise order. 

Mean velocities were measured with round and flattened Pitot tubes (having 
sharpened lips) in combination with static taps located in the wall just beneath 
the wall jet. A DISA, constant-temperature hot-wire anemometer was used to 
obtain the intermittency records. 

The free jet measurements were made 100 slot widths downstream of a care- 
fully constructed symmetrical slot, 0.180in. in width and 24in. in length. Large 
end plates were used to help maintain two dimensionality of the flow. 

The intermittency was measured in two ways: (i) the visual examination of 
trace recordings made of the differentiated signal from the hot wire; (ii) the con- 
struction of a constant voltage or ‘8’ signal which had a positive value when the 
hot wire was in a turbulent region but a negative value of equal magnitude at all 
other times (see Corrsin & Kistler 1947 for a complete description of this 
technique). In  both cases the original signal was recorded on magnetic tape and 
replayed at  a lower tape speed to  facilitate the analysis. The first method is 
somewhat tedious but is attractive because of its simplicity. The discrimination 
level required in the second method (see Corrsin & Kistler) was adjusted by ex- 
amining an oscillograph record of the ‘8’ signal and the original hot-wire signal. 
Both methods therefore depend on the existence of obvious differences in appear- 
ance between the signal from a turbulent region and that from a non-turbulent 
region. These differences are usually quite clear in records which contain signifi- 
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cant lengths of each type of flow but are particularly difficult to detect in signals 
which represent almost fully turbulent flow. Although differentiation of the hot- 
wire signal emphasizes the high-frequency fluctuations associated with the turbu- 
lent motion, it may also mask the entire signal by selectively amplifying any very 
high frequency noise which is present. This difficulty always arises when differ- 
entiating low-amplitude signals from a constant-temperature anemometer 
(which is inherently noisy) and requires the deletion of high frequencies through 
filter circuits or the analysis of the hot-wire signal without differentiation. 

The two methods described were checked by measurements in a smooth- 
wall flat-plate boundary layer and in a small-deficit wake. The results corre- 
sponded, within the accuracy of the measurement, with the distributions of 
intermittency given by Klebanoff (1955) for the boundary layer and Townsend 
(1956) for the wake. For the measurements in the small deficit wake, differentia- 
tion was not used, for the reason just mentioned. The results of this preliminary 
investigation are summarized in table 2. 

Small deficit wake* Boundary layer - -7 
0- - - u, d - - u, 8 - 

d V Lo V 6 
0- 5 

Townsend (1956) 160 8400 0.50 
Klebanoff (1955) 78000 0.14 
Present measurements 153 5480 0.52 43100 0.13 

* The wake examined in the present measurements was formed by mounting a square 
rod of dimension d so that one flat face waa normal to the oncoming uniform &ream. 
Townsend's measurements were made in the wake of a circular cylinder of diameter d. 

TABLE 2. Results from preliminary investigation 

The intermittency factor y is usually defined as 

Y ( Y )  = ProbrY Y(t)lY 

where Y(t)  is the instantaneous position of the boundary between turbulent and 
non-turbulent fluid (Corrsin & Kistler 1947). In  practice, the variation of y(y) 
is nearly Gaussian and y(y) was approximated in the present results by a curve 
of Gaussian form. The probability density P(y)  of Y(t)  may be defined as 

P(Y) = -dY/dY, 

so that a convenient measure of the distortion of Y from its mean position is 
the standard deviation of P ( y )  defined by G where 

fT2 = P(y)  (y - F)2 dy. 

and where 7 is the mean value of Y chosen so that 
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4. Results and discussion 
The development of approximately self-preserving wall jets has been investi- 

gated theoretically and experimentally by Pate1 & Newman (1961) who showed 
that, for approximate self preservation, UJU, = const., and L,K x. To provide 
such a flow, a pressure gradient of the form 

dU,/dx = U1m/(x+x0) 

is necessary, where xo is a virtual origin of the flow and m is a constant which may 
be related to U,lUo. 

The five flows investigated are listed in table 1 with a summary of the per- 
tinent data from each. A typical example of the streamwise variation of Ul/Uo, 
yAtf and Lo for a self-preserving wall jet is given in figure 2 which describes the 
development of wall jet no. 2 of table 1. 

- / 

d A  

Lo A /A 

A x  
0p /’ 

U 6  -+ =15,700 in 

6 = 0205 in, 

/A’ 

- /y 
I I I I I 

2l 1 - 
O O  100 200 

XIb x/b 

FICVRE 2(a) .  The growth o f  self-preserving wall-jet no. 2:  Ujb/v = 15700, b = 0.205 in. 
(b)  The velocity decay and pressure gradient for wall jet no. 2. 

The distributions of intermittency factor y for each of the five flows are given in 
figure 3. Curves of the form 

Y = 44 1 - erf0,  c = k,(y/Lo - k,) 
have been drawn through the data, k, and k, being chosen for the best agreement 
with the measured points. In every case y is measured from the point of maxi- 
mum velocity. 

The quantity ?lo LO/€ appearing in equation (5) may be calculated by assuming 
a mean value of E over the outer part of the layer or by choosing a single non- 
dimensional ordinate to represent the shear stress in the outer region. For the 
present evaluation the latter approach has been used, y = Lo being chosen as a 
convenient and yet typical point for the calculation. The values of ( UoLo/s), ~ Lo 

listed in table 1 were calculated from the measured mean flow development and 
the streamwise boundary-layer equation of motion. (Normal turbulent stress 
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terms were neglected.) If equation (5) is valid, a plot of (&\!oLo/e)y=Lo versus 
(L0/g)2 will appear as a straight line, since B is assumed to be proportional to 
I f ,  the large-eddy scale. Figure 4 shows these quantities for the five flows listed 
in table 1 and also includes values calculated from Townsend's measurements in 

0 0-2 0 4  0.6 0 8  1.0 

Y 
FIGURE 3. Intermittency faotor distributions. Curves of the form y = t (1 - erf 5) have 
been drawn through the measured results, where 5 = k,(y/L,-k,) and k,, k ,  are listed 
below : 

No. 1 2 3 4 5 

k,  2.28 2-10 1.75 1-50 1.77 
k ,  2.09 1-72 1.59 1.40 1.81 

The numbers correspond with those of tablo 1. The curves may be located by means of 
k,, which is the value of ylL, at which y = 4. 

a self-preserving small-deficit wake (Townsend 1949). The numbers of the 
points in figure 4 correspond with those in table 1. Despite some scatter, the 
points in figure 4 do display the expected linear trend and thereby substantiate 
the form of relationship predicted by the energy equilibrium hypothesis. Flow 
no. 4, as may be seen from table 1, has large values of y,$fLo and UJU,; a significant 
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fraction of the turbulence near y = Lo has probably been produced near the wall 
in this case, and convected outward as in a simple boundary layer. In  view of this 
anticipated double structure in the intermittent region it is not surprising that 
point 4 departs somewhat from the general trend of figure 4. 

50 - 

40 - 

0 2 4 6 8 10 

(Lo/u)2 

FIGURE 4. The shear stress parameter ( UOLO/~)ZI=Lo as a function of 
the large-eddy scale. Numbers correspond with those of table 1. 

It is interesting to note that measurements in a flat-plate boundary layer yield 
results which are in fair agreement with those of figure 4 once allowance has been 
made for the change of shape in the velocity profile. The comparison is most 
easily made in terms of equation (4) which, after 'substitution of cr for I' as 
before, may be written for the boundary layer as 

where 6 is a nominal boundary-layer thickness. From the boundary-layer 
measurements of Klebanoff (1955), at the representative point @, 

- 
uv/U: = - 0.00082, a( U/Ul)/a(y/6) = 0.366 and a/& = 0.14. 

Using these figures, the constant of proportionality in equation (6) would be 
0.312. A similar calculation, based on recent measurements in a retarded 
equilibrium boundary layer (Bradshaw & Ferriss 1965) provides a value for this 
same constant of proportionality of approximately 0.25. 

Similarly for the jets, wakes and wall jets already considered, equation (4) may 
be written as: 

where k = log,2. From figure 8, the relation between e/UoLo and (cr/Lo)2 is 

1 approximately 

~ I U o L o ~  (crm2 k, 

8 

7 Fluid Mech. 24 
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The constant of proportionality predicted by these values is 0.268. The agree- 
ment between these results suggests that the large eddies in the boundary layer 
are similar in form to those in jets or wakes. 

The author would like to thank Dr B. G. Newman for pointing out to him the 
derivation of the energy equilibrium hypothesis contained in 3 1. This work was 
supported financially by the Defence Research Board of Canada under Grant 
number 9551-12. 
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